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The vibrational properties of one-dimensional hierarchical systems are 
investigated and results are obtained for both their eigenvalues and eigenvectors. 
Two cases are considered, the first one with a hierarchy of spring constants and 
the latter with a hierarchy in the masses. In both cases the eigenspectrum is 
found to be a zero-measure, two-scale Cantor set with a fractal dimension 
between 0 and 1. The scaling properties of the spectra are calculated using 
renormatization group techniques and are verified by extensive numerical work. 
The low-frequency density of states and low-temperature specific heat are 
calculated and a singularity is found in the scaling behavior. The eigenvectors 
are found to be either extended or critical and self-similar. A transfer matrix 
formalism is introduced to calculate the scaling properties of the envelope of the 
critical eigenvectors. Furthermore, a connection is established between the 
hierarchical vibration and diffusion problems, as well as to the same problems 
in random systems, thus showing the universality of the observed features. 

KEY WORDS: Hierarchical systems; phonons; Cantor spectra; renormaliza- 
tion group. 

1. I N T R O D U C T I O N  

C o m p l e x  phys ica l  s t ruc tu res  ve ry  o f ten  d i sp lay  a h i e r a r ch i ca l  o r g a n i z a t i o n .  

This  is ref lec ted  in the  l a rge  span  of  cha rac t e r i s t i c  t imes  wi th  wh ich  they  

r e s p o n d  to  ex te rna l  p e r t u r b a t i o n s .  A la rge  m o l e c u l e  wi th  different  force  

cons tan t s ,  for  example ,  m i g h t  exh ib i t  a v i b r a t i o n a l  s p e c t r u m  tha t  reflects 

the  effect ive d e c o u p l i n g  o f  l ow-  a n d  h i g h - f r e q u e n c y  c o m p o n e n t s .  Th is  can  

lead  in t u r n  to c o m p l i c a t e d  spec t r a  wh ich  w h e n  m e a s u r e d  c o u l d  be  used to 

e luc ida t e  the  u n d e r l y i n g  s t ruc tu re  o f  the  system. 
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Recently, much attention has been devoted to the transport (1 5) and 
electronic (6-1~ properties of hierarchical systems. In the case of diffusion, it 
has been shown that a hierarchical arrangement of energy barriers can 
give rise to anomalous behavior, i.e., the mean-squared displacement 
( r 2 ( t ) )  ,,~ t x~m, where the exponent x can take on values anywhere between 
0 and the normal value of 1. Furthermore, the exponent x is found to 
undergo a phase transition as the parameter R characterizing the hierarchy 
(equivalent to the temperature in this case) is varied. In the quantum 
Schr6dinger problem, the eigenspectrum is found to be a zero-measure 
Cantor set and the eigenstates self-similar and critical. In this paper we 
study another aspect of the hierarchical systems, namely their vibrational 
properties. In the context of random (11'12) or quasiperiodic (13'a4) systems, 
the vibrational problem has had a long history. In the hierarchical 
problem, the vibrational spectrum is unknown, and it is the purpose of this 
paper to elucidate its nature. 

We begin our investigation in Section 2 with a basic description of the 
problem and the fundamental equations involved. We treat two distinct 
cases, a first one with a hierarchy in the values of the spring constants and 
all the masses identical, and a second with a hierarchy in the masses and a 
fixed value for the spring constants. We also consider, as a simple example, 
a system where all masses and spring constants are the same, the results of 
which will prove a convenient reference point. In Section 3, we solve for the 
frequency spectrum for the first case above, employing both numerical and 
analytical techniques. We find that the allowed frequencies form a 
zero-measure Cantor set and we calculate its fractal dimension. Using a 
renormalization group procedure, we are able to account for numerically 
observed scaling properties of the spectrum. In Section 4, we turn to the 
properties of the eigenvectors in the first case. Numerically, we observe two 
types of eigenvectors: extended states and critical states (a nonnormalizable 
state where the envelope of the function decays algebraically from the 
maximum). We relate these eigenvectors to the appropriate parts of the 
spectrum observed in Section 3, and for the critical states we calculate the 
scaling exponent for the envelope using a transfer matrix formalism. 

In Section 5, we discuss the frequency spectrum for the second case. 
We find qualitatively similar results to that found for the first case, and we 
again present a renormalization group analysis to explain the numerically 
observed features. In Section 6, we apply the results derived in the previous 
parts to the calculation of the density of states and heat capacity. We find 
an anomalous behavior for the exponent of the specific heat (C ~ T x) as 
well as a singularity in the exponent as the hierarchy parameter R 
approaches a critical value Rc. We also relate the hierarchical vibration 
problem to the hierarchical diffusion problem, as well as to both the 
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random diffusion and random vibration problems, which reveals the 
universality of the properties we have found. In Section 7, we summarize 
our results and making a few closing comments. 

2. S T A T E M E N T  OF THE PROBLEM 

We consider a one-dimensional chain with neighboring masses con- 
nected by springs. Letting x,  denote the displacement from equilibrium of 
the nth mass, and assuming that xn ( t  ) = x n e  i~t, Newton's law gives the 
basic equation of motion (written in an appropriate dimensionless form): 

-mn(.O2xn=kn, n+l(Xn+l-Xn)+kn 1,n(Xn_l--Xn) (2.1) 

The spring contstants are assumed to be symmetric, i.e., kn, n+l = kn+ t,,. 
One can identify two distinct cases to study. In the first case (case I), we 
put the hierarchy in the spring constants, while keeping the values of the 
masses fixed. Explicitly, this means that we set m, - 1, and take the spring 
constants to be given by 

kn l , n  = kj(n) = RAn) (Case I) (2.2) 

wherej(n)  is the largest power of 2 which divides n. Here, R is some dimen- 
sionless parameter, which we will assume for simplicity lies in the interval 
[0, 1 ]. We have represented schematically the hierarchy of spring constants 
in Fig. la. In Sections 3 and 4 we will solve for the eigenvalues and normal 
mode eigenvectors of Eq. (2.1) under these conditions. 

In the second case (case II), we take the hierarchy to be in the masses 
and keep the spring constants fixed. Thus, we take kn_ ~,n = 1, and assume 
that the masses are given by 

mn = #j(,) = R j(") (Case II) (2.3) 

wherej(n)  is again the largest power of 2 which divides n. For  convenience, 
we take R to be in the interval [1, oo) here. Figure lb gives a schematic 
representation of the distribution of masses in this case. In Section 5, we 
will discuss the eigenvalue solutions to Eq. (2.1) for this case. 

One should note that the hierarchies described by Eqs. (2.2) and (2.3) 
are not the only possibilities. Instead of these simple binary structures, 
one might consider n-ary ones or even "complex" ones (in the sense of 
Huberman and Hogg). (15-17) We claim, however, that the general features 
of the results we obtain here are reproduced in these other systems. We 
choose the binary case because it lends itself to a simple renormalization 
group treatment. 



736 Keirstead, Ceecatto, and Huberrnan 

kr~ 

-2 -1 

k3 

" I 
'1 

0 1 2 3 4 5 6 7 8 9 

l 
v 
-1 
H 

O i 2 3 ~ 5 6 7 8 9 
l'l H It It It 

Fig. 1. (a) Schematic representation of the hierarchy of spring constants in case I. A dot 
represents a mass and the height of a line between two neighboring masses determines the 
spring constant value k. Note that the drawing is for R > 1, although we consider the case 
R < 1 in the text. The "x" marks denote those cells which are decimated in the renormalization 
described in Section 3.2. (b) Schematic representation of the hierarchy of mass values in 
case II. A dot represents a mass site, the height of a line above any mass determines its value 
#, and the "x" marks denote those masses which are decimated in the renormalization 
described in Section 5.2. 

Before  p r o c e e d i n g  to  the  s o l u t i o n  o f  the  a b o v e  cases, it is i n s t ruc t ive  to  

c o n s i d e r  first the  case  w h e r e  b o t h  the  sp r ing  c o n s t a n t  and  mass  va lues  a re  

fixed, i.e., the  R ~ 1 l imi t  o f  cases  I and  II  above .  Here ,  we m a k e  use of  the  

uni t  pe r iod i c i t y  to label  the  e igens ta tes  by a w a v e v e c t o r  q. T h e n  we h a v e  

xn+/= xne i~ A p p l y i n g  this  to  Eq.  (2.1) gives  the  d i spe r s ion  r e l a t ion  

co 2 -= z = 4 sin 2 q/2 (2.4) 

Thus ,  the  a l l o w e d  s q u a r e d  v i b r a t i o n a l  f r equenc ies  z (it will  be  c o n v e n i e n t  
to  use z ins t ead  of~o) lie in the  in t e rva l  l-0, 4 ] .  T h e  e igenvec to r s  a re  g iven  

by  xn(q)= Xo ezqn a n d  are  c lear ly  e x t e n d e d  states.  



Vib ra t iona l  Properties of Hierarchical Systems 737 

3. V I B R A T I O N A L  S P E C T R U M .  CASE I 

3.1. Numerical  Results 

We begin our study of the vibrational spectrum of Eq. (2.1) under the 
conditions of Eq. (2.2) by considering some numerical results. We choose 
to study the infinite hierarchical system by considering it as the limit of a 
sequence of periodic systems of size Pn = 2~, n = 1, 2,.... The period Pn 
system is obtained from Eq. (2.2) by setting all spring constants kj, j>>.n, 
equal to k n. Thus, the period Pn system has precisely n distinct spring 
constants. Because of the periodicity, we may label the eigenvectors by a 
wavevector q such that xj+p = x j e  iqp. Applying this to Eq. (2.2), we see that 
for any value of q e [0, 2~] we may reduce the infinite set of equations to a 
set of Pn equations. Thus, we will generate Pn bands of allowed frequencies. 
Clearly, each band contains the same number of states (a finite number if 
one includes boundary conditions on the system so as to quantize q). The 
band edges will occur when q = 0 or q = ~r. If we numerically diagonalize 
the above p,  equations, with q taking on these two values, we will solve for 
the 2pn edges of the Pn bands. The resulting band structure can then be 
investigated. 

We have carried out this numerical procedure for several different 
combinations of period and R. Figure 2 shows an example of the band 
structures one obtains at a fixed value of R for a series of systems of 

4 
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The allowed frequency bands (in dimensionless units) in case I for periodic systems of 
period 2 ", n = 0, 1, 2, 3. We have used R = K = 0.8. 
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increasing period. From analysis of the numerical results, we find that the 
total bandwidth B n of the period p ,  system behaves exactly as 

B,,=4R" (3.1) 

This fact, along with the development of the band structure with increasing 
period (as shown in Fig. 2), reveals that the allowed frequency spectrum of 
the infinite system forms a Cantor set of zero Lebesgue measure (we define 
a Cantor set to be a closed set containing no interior or isolated points). 
Hence, the spectrum is a fractal or, as we shall see, a multifractal set. 

It is of interest to characterize the various properties of the spectrum, 
and in particular to investigate the scaling behavior of the band splittings 
and to calculate the fractal (or Hausdorff) dimension of the set. An 
examination of Fig. 2 reveals a great deal of self-similarity in the structure 
of the bands as we keep doubling the period. We see that every band splits 
into two bands as the period of the system is doubled. Furthermore, by 
studying the numerical results for a number of different cases, we find that 
there are two scaling parameters that describe the sequence of band split- 
tings for a particular R value: the first characterizes the limiting ratio of the 
bandwidth of a band in the period Pn system to the bandwidth of the lower 
band into which it splits for the period Pn+l system; the second charac- 
terizes the ratio with respect to the upper band into which it splits. For 
example, for R = 0.2, we find that the first scaling parameter is 21 ~ 10.00, 
and the second scaling parameter is 22~12.17. For  R=0 .8 ,  we find 
21 ~ 4.00 and 22 ~ 4.98. Hence, we clearly see that the frequency spectrum 
of the infinite system is a two-scale Cantor set. 

From the above numerical information, we may also determine the 
fractal dimension Do of the set. If we define N(n, l) to be the number of 
segments of length l which it takes to cover the bands of the period pn 
system, then by definition N(n, I )~ l  -D~ The total bandwidth then scales 
as B n ~ l Do. But from the above, we know that Bn ~ R" and N(n, l )~ 2 ~. 
Combining these expressions gives 

D O = log 2/log(2/R) (3.2) 

There is another interesting property of the spectrum worth noting. 
Consider, for instance, the Pn bottom band edge values in the period p,  
system. Note that for all larger period systems, these values remain at the 
bottom edges of various bands. Hence, these points are in the spectrum of 
the infinite system. (They are not the only points in the spectrum because 
there are only a countable number of them, while the spectrum is uncoun- 
table). The same is not true for the upper band edges: we clearly see that 
their values are not preserved when the period size increases. 
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3.2. Renormal izat ion Group T r e a t m e n t  

We now provide a concrete analytical understanding of the above 
numerical results. We do so by considering a renormalization of the 
original equations of motion. We choose to decimate all cells marked with 
an "x" in Fig. la; that is, we eliminate all x , ,  where n = 4j + 1 or n = 4j + 2, 
in terms of the remaining variables. For cells - 1, 0 ..... 3, we have 

(ko + k l  - z )  x 1 = k I x 2 -I- koX 0 

(ko + k l  -- z )  x 2 = k o x  3 + k I X 1 
(3.3) 

Thus, our equation for Xo becomes 

( k , + k o - z )  x o = k n x _ l  + k o x l  

= k , x _ l  + k o  [ k~176 - z )  x0 + - ~ x 3 ]  (3.4) 

where A = (k 0 + k l - z )  2 -  k~. We recast this equation in a form so as to 
make the renormalized system resemble the original as much as possible: 

-- z'x'o, = k'~ _ ~(x~ v -  X'o,) + k ' o ( x l , -  X'o,) (3.5) 

where the renormalized spring constants, frequency, and eigenvector are 
given by 

k~ = k 0 

k'n_ 1 = k0-~l kn, n~>2 

(3.6) 
(z - k o ) A  + kZ(ko + 2k l  - z )  

Z t ~  
k o k l  

Xln, ~ XL n/2 j 

Here, Ln/2_] denotes the greatest integer less than or equal to n/2. Note in 
particular that the magnitude of the eigenvector is not renormalized, only 
the labeling of the components changes. 

Let us now generalize the definition of the spring constants given in 
Eq. (2.2), by assuming that 

k , = { 1  if n=O (3.7) 
K R  n - 1 otherwise 
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If we set K =  R, we obtain Eq. (2.2). This generalization will allow us to 
write the renormalization equations (3.6) in terms of two parameters only 
(not counting the trivial renormalization of the eigenvector indices), 
namely K and z. In particular, we obtain 

K' = RA 

( z -  1)A + (1 + 2 K - z )  
Z t _ _  

K 

(3.8) 

have A = ( I + K - z ) 2 - K  2. The other renormalized spring 

(3.9) 

Using k o = 1 and k 1 = K, we may explicitly determine M~ as 

1 (  A - ( 1 + K - z ) )  (3.10) 
M ~ = ~ .  (1 + K - z )  - 1  

We require that x,, remain bounded as n ~ oo. Defining T 1 = T r  MI, we 
must have 

IT~I= @ ~<2 (3.11) 

Equation (3.11) leads to the presence of two bands: for K~< 1, the lower 
band has 0 ~< z ~< 2K, and the upper has 2 ~< z ~< 2 + 2K. Note that this result 
agrees with the period-two structure seen in Fig. 2 (setting K =  R). 

W e  n o w  

constants are k~ = 1 and k'n = K'R"  1, n >~ 1. 
We may now make use of this two-parameter renormalization to 

classify the allowed frequencies. Let us treat the infinite system as a 
periodic one with period p ,  for some very large n. Initially, we have K = 
K (~ = R, and we wish to determine whether some frequency z -- z (~ is in the 
spectrum. We note that each application of Eqs. (3.8) reduces the period of 
the system by a factor of two and renormalizes the values of K and z. After 
n -  1 such steps, we will have a system of period Pl = 2. Suppose that we 
know the allowed frequencies for the period-two system for an arbitrary 
value of K (we will derive this momentarily). Then we have the following 
condition: z (~ is in the spectrum of the period-pn system provided z (" ~) is 
in the spectrum of the period-two system. 

Because of the role played by the period-two system in the above 
argument, let us derive its band structure for an arbitrary spring constant 
K. Define the transfer matrix MI such that 
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The condition expressed by Eq. (3.11) applied to z (n *) and K (n-l) 
determines whether or not z is in the spectrum of the period-pn system. For 
the infinite system, then, we need to investigate the behavior of these 
iterates as n -+ oo. We do so by examining the fixed points of Eqs. (3.8). A 
short calculation reveals the existence of two fixed points: 

~R/(1-2R), 0~<R<~ 1/2, z * = 0  (3.12) 
K~' = ( +oo, 1/2<~R<~ 1, 

R 2 - R  
K * - I _ R 2 ,  Z * - l _  R (3.13) 

If we evaluate T 1 at these fixed points, we find T(1)*=2 and T(2)*=R. 
Thus, initial frequencies which iterate to one of these fixed points are in the 
spectrum, and hence both of them are relevant to the problem. 

Next, we examine the scaling properties of these fixed points. 
Evaluating the matrix of partial derivatives [8(z', K')/8(z, K)] at the two 
fixed points and diagonalizing, we find the eigenvalues 

) ( t ) _  ~2R -m-1 , 0~<R~< 1/2 (3.14) 
~1,2 - "~4, 2R, 1/2 ~< R ~< 1 

2(2) - 1 {(2+2R+R2)+[(2+2R+R2)_SR311/2} (3.15) 
1,2 - - 2 - R  

We note that in both cases (and for any value of R) 2ma x > 1, and hence 
both fixed points are unstable. This is consistent with the Cantor set 
property of the system we discovered above. Furthermore, we may relate 
these eigenvalues to the scaling properties of the spectrum, as seen in Fig. 2. 
Numerical investigation of large-period systems reveals that points near the 
lower edge of any band are attracted initially toward the first fixed point 
before eventually veering away (with the exception of the point z = 0, for 
which all iterates z (n) are zero); points near the upper edge of any band are 
initially attracted toward the second fixed point. Thus, 2(m~,)x should be the 
relevant scaling parameter for the evolution of the lower-band splitting and 
2(m2~)x that for the upper-band splitting. For  R = 0.2, we find 2(~)x = 10 and 
.~(2) = 12.1671... For R=0 .8 ,  we get ~(1) = 4  and 2 (2) =4.9786... These m a x  �9 V m a x  m a x  �9 

numbers are in excellent agreement with those found numerically above. 
Lastly, we can account for the numerical observation that the bottom 

band edges (see Fig. 2) for any of the periodic systems are also in the 
spectra of all larger-period systems, in particular of the infinite system. 
Consider the values of z which iterate to z* = 0  in n - 1  steps, assuming 
K =  R initially (K will also iterate to K*, although not in a finite number of 

822/53/3-4-[3 
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steps). We find that there are precisely p,  solutions and that they are equal 
to the observed lower band edges for the period-pn system. Since 
TI(z=0,  K ) = 2 ,  for any K, and since z = 0  iterates to itself upon 
renormalization, we see that these points will remain in the spectra of all 
the larger-period systems. 

4. NATURE OF THE EIGENVECTORS.  CASE I 

The next question we address is the nature of the eigenvectors of 
Eq. (2.1) in case I. We begin by considering a generalization of the transfer 
matrix method introduced in Section 3.2 for the period-two system. 
Knowledge of the transfer matrices enables us to determine the value of the 
eigenvector at any site. In particular, we will be interested in the shape of 
the envelope of the eigenvectors. We find two basic types: the first one has 
a constant magnitude and hence corresponds to an extended state, while 
the second shows algebraic decay of the envelope from the maximum and 
is thus a critical state. These results are verified by numerical work. 

4.1. Transfer  Mat r ix  Formalism 

Let us define the two-vector x j=  (xj+ 1 ,  Xj) T" We may then define the 
2 x 2 transfer matrix Mn by (recall that p ,  = 2 n) 

Xp = M n x  0 (4.1) 

If we also define B, such that xp,, = B ,  xpo_ z, then we can easily see that 

M n -  = A~M?~ 1 
7n ~n - 

where An = BnB2~_I .  The expression for M1 is given in Eq. (3.10). A tedious 
but straightforward calculation then leads to the following expression 
for An: 

A n =  f ~ C  + I (4.3) 

where fn = ( 1 - R ) / ( K R  ~ - ~), I~ = z - 1, I is the 2 x 2 identity matrix, and C 
is given by 

: )  ,44, 
The transfer matrix has a number of properties which may be deduced 

from the above expressions. First, note from Eqs. (4.3) and (3.10) that 
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det An = det MI = 1. Thus, from Eq. (4.2) we see that det M,, = 1 for every 
n. Second, knowledge of the transfer matrices and the values of the eigen- 
vector in two cells (typically cells 0 and 1), which are determined by the 
global boundary conditions and normalization, is sufficient to determine 
the value of the eigenvector in any cell. For example, suppose the values Xo 
and xl are known, and we wish to find x26. Note that 26 = 24+ 23+ 21, 
hence x26 is given by the upper component of the two-vector M1M3M4x o. 
A similar binary decomposition will work for any other cell. 

Next, we may use the transfer matrix Mn to determine the allowed fre- 
quencies for the period-p, system. From Eq. (4.1), we see that boundedness 
of the eigenvector components requires that ITs[ ~< 2, where T , -  Tr M n. 
This condition clearly must be equivalent to that derived in Section 3, 
where we found that z is in the spectrum of the period-p,, system with 
spring constant K if and only if its iterate z (n- 1)is in the period-two system 
with renormalized spring constant K (n 1). Hence, we conclude that 
T,(z, K)= Tl(z In- 1), K(n-1~). In particular, if (z*, K*) is a fixed point, then 
T,(z* ,K*)= Tl(z*, K*) regardless of n. Equation (3.11) gives the exact 
value for this trace. 

Equation (4.2) is a nonlinear matrix equation and is difficult to solve 
for general values of z and K. However, at either of the two fixed points 
given by Eqs. (3.12) and (3.13), we may linearize the recursion relation for 
Mn and solve the resulting equation exactly. This enables us to determine 
the behavior of the eigenvector at either of the two fixed points. To 
linearize Eq. (4.2), we first note that for any 2 x 2 matrix A with deter- 
minant 1, A 2 - A T r A + I = O .  Now, M,  i is such a matrix, where 
TrMn l (Z* ,K*)=TrMl(z* ,K*)=- t .  (It is crucial to note that t is 
independent of n here; this is what makes the linearization possible at the 
fixed points.) Thus, Eq. (4.2) gives 

Mn = An(tM, -1 - I) (4.5) 

To solve Eq. (4.5), we note that the product of two of the A matrices 
can be written as 

AiAj= ( f iC + I)(fsC + I) 

=Z fiG2 + (fi+ fj)C+ I 

= (f,. + fj)  + I (4.6) 

since the C2=  0. We may now iterate Eq. (4.5) to write Mn in terms of MI 
and products of A matrices: 

n 2 

M n = t " - I ( A , A , _ I . . . A 2 ) M I -  ~ # ( A n A , _ I . . . A n  j) (4.7) 
j = 0  
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The products of the A matrices may be evaluated by repeated use of 
Eq. (4.6). We obtain 

A . A .  1 " . A n  j = ( f n + f n _ l  + "'" + f ~ _ j C + I  

1 - R  j+ l  
- KR"-  1 C + I  (4.8) 

If we now insert Eq. (4.8) into Eq. (4.7), sum all the resulting geometric 
series, and multiply out the matrices, we arrive at the following expressions 
for the components of Mn: 

1 

c(~ = ~. (1 -z) 2 

+ 2t n '+K---k- ~ R 1 - t R  T - ; -  

l _ t  ~ 1 

1 - t  

~ =  I ( k R /  ( 1 - z ) - t " - ~  

1 I [ R I - ( t R ) "  ' 1 - t  n - l ]  
X R  ~ -  ]--Ti i--i j (I-~)~ 

1 ( t )  ~-I 1 [ I-(tR)" 
~":2"<~] (1-z)+r-'+K---~= ~ R l-tR 

_l (t) ~ I 1 [ R I - ( t R ) " - I  
< : K k R ] K R " - ~ -l-T\ 

l _ t  ~ 1 
1--t  

1 

(4.9) 

1 -- t n 1] 

I - -  t n - I  ] 
] - ~ t  J ( l - z )  

One may check these equations by showing that det Mn = 1, Tr Mn = t 
[when evaluated at the fixed points given by Eqs. (3.12) and (3.13)], and 
that for n = 1 they reduce to Eq. (3.10). 

Let us now evaluate Eq. (4.9) at the fixed points found in Section 3. 
Consider first the fixed point (FP1) of Eq. (3.12) for R <  1/2. Here, the 
trace t = 2. We may simplify Eq. (4.9) to find 

1 - -  
(FP1, R < 1/2) (4.10) 
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For R > 1/2, we have 

1) 
1 + I  (FP1, R > 1/2) (4.11) 

At the second fixed point (FP2), Eq. (3.13), the trace t = R and the transfer 
matrix reduces to 

1 
= 1 ( R - " -  1) 

f l , = R  1 + l - R "  x+ 
(R " - I ) ( 1 - R  n 1) 

( l - R )  2 , (FP2)  (4.12) 

6n=-R  I+R 
R - - / Z m R  1 

1 - R  

4.2. Numerical  Results 

Before applying the results of Section 4.1 to the analysis of the eigen- 
vectors, we first consider some numerical results. To obtain a numerical 
picture of the eigenvectors at the fixed points, we apply Eq. (2.1) with the 
appropriate spring constants and frequency to obtain xj in terms of xj 1 
and xj 2. We then need only specify the values of x0 and xl ,  say, and all 
others will follow. To determine Xo and x~, let us again treat the infinite 
system as the limit of a sequence of periodic systems, as in Section 3. For  a 
system of period Pn = 2", the periodicity permits us to label each eigen- 
vector with a wavevector q such that Xn+pn=Xn eiqpn. Thus, Xpn=XO eiqpn. 
But, from the transfer matrix we have xp. as the lower component of M,  x0, 
i.e., Xp=7,Xl+(5,Xo. Equating the two expressions, and assuming an 
overall normalization such that Xo = 1, we find that 

xl = lim - [(6,  - duP')/7, ] 
n ~ c o  

= - 6 . / 7 .  

1/(1 - R), FP2 
(4.13) 

We have used these boundary conditions for cells 0 and 1 to plot the 
eigenvectors at the two fixed points, with typical results shown in Fig. 3. 
The eigenvector corresponding to FP1 (Fig. 3a) has a constant magnitude 
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(a) 

( b )  

Fig. 3. (a) The eigenvector in case I corresponding to the first fixed point. We have used 
R =  K=0.8 ,  although any other value of R gives the same picture. (b)The  eigenvector in 
case I corresponding to the second fixed point, plotted for the first 128 cells. We have used 
R = K =  0.8. (c). Same as in (b), except plotted for the first 512 cells. Note the self-similarity. 
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(c) 

Fig. 4 (continued) 

equal to one, and is clearly an extended state. The result is independent of 
R. This may easily be seen from Eq. (2.1) when z* =0 .  In that case, we 
have x ,  = xl = 1 for any n. 

The eigenvector for the second fixed point (Figs. 3b and 3c) is more 
interesting. It  is self-similar, as is apparent  in the diagrams. It also increases 
in magnitude, although not monotonically, as one moves away from the 
Origin. If we identify the maxima within any given "bicade," i.e., the region 
between cells 2 n and 2 n +1 for some n, we find that they occur at cells num- 
bered (4 j -  1)/3 and 2(4 j -  1)/3. The envelope of the eigenvector, that is, 
the smooth curve through these maxima, is found to increase as a power 
law with distance: max~ v Xn n .  For  R =0.2,  the exponent was found to be 
approximately v = 0.227; for R = 0.8, we found v = 0.607. We see then that 
the eigenvector exhibits a power law growth from the minimum, or alter- 
natively a power law decrease from the maximum (which for this infinite 
system lies at infinity). This eigenvector is thus intermediate between an 
extended state, such as that found for FP1, and an exponentially localized 
state, such as those found in random systems. Eigenvectors of the type of 
FP2 are termed "critical." 
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4.3. Explanation of the Observed Scaling 

We may  explain the algebraic scal ing of the envelope of FP2  using our  
transfer matr ix  formalism. Define 

Pn=x(4.+l_l)/3 and Qn--X(4n+l-1)/3 1 

Then, since (4" + l _ 1)/3 = 2 o + 2 2 q- . - -  "-k 22n, we have 

= - A ,  (4.14) 
X0 X0 

As suggested by the numerical  evidence, let us assume a scaling for the 
peaks  such that  l imn~ oo P , + I / P ,  = r/. We m a y  relate r/ to the exponent  v 
defined above:  P ,  ~ (4") v, and hence r /=  4 u. Thus,  

v = log q/log 4 (4.15) 

To  determine t/, we employ  the following method.  We write 

=An-lMzn Xo - 1 \  x22. / 

But we can calculate this last vector  from the transfer matr ix  (4.12) and the 
initial condi t ions (4.13 ): 

x22. / i----R \Xo /  L~-~--R q ( 1 - R ) 2 J \ 0 J  (4.17) 

Insert ing Eq. (4.17) into (4.16), we obta in  

- 1 - R  \ Q .  , (4.18)  

Let the componen t s  of  A,  be denoted 2~. For  large n, we m a y  write 
q = P , / P , -  1 = P,  +I/P, .  Using Eq. (4.18) to evaluate  these two ratios and 
then equat ing them, we obta in  

21, 2R 2" + =/(1 - R) + R =" + 3/(1 -- R)  2 

~] - -  )~71 1 2 R 2 , / ( l _ R ) + R 2 , + 1 / ( l _ R ) 2  

2~1 R 2 (4.19) 
271 1 

Now,  A,  = A ,  1M2,. Hence,  271/27~ x = c~2, + 7z, l ,_  1 and )~72/).~1 1 = f12, + 
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62~l~_ 1, where ln_ 1 = 2']2-1/2~ 1. Combining the first of these equations 
with Eq. (4.19), we obtain 

1 q 

From Eq. (4.14) we can write r/ in yet another form. Since 
Pn = s + 2~2Xo, we have 

,t~1 xl + 2~'2xo 
;7 : ~ n - 9C0 

zll lXl + 2 ~ f l  

(0~2,, + 72, ,  l,, - 1)  x l  + (/~2n "{- 6 2 n l , ,  - ~)  X o  

x I + l ,_ iXo 
(4.21) 

We then insert Eq. (4.20) into Eq. (4.21) and solve the resulting quadratic 
equation for q. We find the solution (choosing the root that gives t! > 1, as 
seen numerically) 

q = 111 + 2R + (1 + 4R) ~/2] (4.22) 

For R = 0.2, Eq. (4.22) gives v = log q/log 4 = 0.2275...; for R = 0.8, it gives 
v = 0.6085 .... The numerical results found above are in excellent agreement 
with these exact values. 

4.4. Eigenvectors at Other  Points in the Spectrum 

The only frequencies we know in the infinite spectrum are those 
corresponding to lower band edges in the periodic approximations. We 
expect that the other frequencies iterate to one of the two fixed points, and 
that thus their corresponding eigenvectors behave similarly to those at the 
fixed points, although on a different length scale. (It is conceivable that 
there are frequencies which correspond to chaotic or n-cycle solutions to 
the renormalization equations, but there is no evidence of this in the 
numerical data.) We see this length scale expansion explicitly in Fig. 4, 
where we have plotted the eigenvector corresponding to a lower band edge 
first appearing in the period-32 system. Note that the eigenvector also has 
period 32, and is thus simply an inflation of the eigenvector at the first 
fixed point as seen in Fig. 3a. 

5. V I B R A T I O N A L  S P E C T R U M .  CASE II 

5.1. Numerical  Results 

We now turn to the case where the hierarchy is in the masses, as 
expressed by Eqs. (2.1) and (2.3). We assume here that R > 1; this is done 
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n 

Fig. 4. An eigenvector corresponding to the squared frequency z = 2,02399569, in case I. We 
have used R = K=0.5. This frequency corresponds to the bottom of the 19th band in the 
period-32 system. 

so as to make the problem as similar to case I as possible and to simplify 
the interpretation of the renormalization group investigation described in 
the next section. Numerically, we have studied this problem in precisely the 
same way as was done for case I in Section 3. The allowed frequency bands 
for several consecutive periods are shown in Fig. 5 for R = 1.5 (the general 
features of the spectrum for this value of R are representative of those for 
any other value). First, we observe that for any given period p , ,  the total 
bandwidth Bn is given by 

B,=4/R" (5.1) 

Thus, once again the picture of the band structures for a sequence of 
systems of increasing period, as shown here in Fig. 5, shows explicitly the 
construction of the zero-measure Cantor set spectrum in the infinite limit. 

As in case I, we have investigated the scaling properties of the spec- 
trum in great detail. After examining many different R and p,  values, we 
again find that the spectrum is governed by only two scaling parameters, of 
precisely the same description as above: the first gives the limiting ratio of 
the width of any band in the period-pn system to that of the lower band 
into which it splits in the period-pn+l system; the second describes the 
ratio to that of the upper band into which it splits. As numerical examples, 
we find for R =  1.5 that 2~ =4.07 and 2z = 5.41; for R = 4 ,  we find 21 =8.03 
and 22 = 9.94; and for R = 8, we obtain 2~ = 16.0 and 22 = 17.3. 
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Fig. 5. 

3 

N 

2 

I 

I 

3 

The allowed frequency bands (in dimensionless units) in case II for periodic systems 
of period 2 ~, n = 0, 1, 2, 3. We have used R = M 1 = 1.5 and M2 = 0. 

We m a y  also carry  out  the calculat ion of the fractal d imension 
following the same a rguments  as in Section 2, except this t ime using 
Eq. (5.1). Doing  so leads to 

D O = log 2/ tog(2R) (5.2) 

For  R = 1, this gives a ffactal  d imension  Do = 1, in agreement  with the 
band  structure implied by Eq. (2.4). F o r  R ~ o% Eq. (5.2) gives a fractal 
d imension Do = 0. This cor responds  to the case where every other  mass  is 
infinitely large. Hence,  the spec t rum consists of  the single point  z = 2, 
which clearly has fractal d imension zero. 

Lastly, we again note  that  the lower band  edges for the pe r iod-p ,  
system remain  in the band  structure of all larger-per iod systems, and hence 
the infinite system as well. The  explanat ion  for this effect is the same as in 
case I (see the end of Section 3.2), this t ime using the renormal iza t ion  
equations,  which we derive in the next section. 

5.2. Renormal izat ion Group Analysis 

We m a y  account  for the scaling propert ies  of the spec t rum through  a 
renormal iza t ion  procedure  ana logous  to that  in Section 3. Dec imate  all the 
odd-site masses,  as shown in Fig. lb,  and obta in  

X2n + 2 "]- X2n 
= ( 5 . 3 )  x2,+1 2 - / ~ o Z  
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Let us consider the five sites labeled 0, 1,..., 4 in Fig. lb. The equation of 
motion for the second mass is 

x4 + 2x2 + x o 
- - # I Z X 2  = X 3 -Iv X 1 - -  2x2 - 2x2 (5.4) 

2 - # o Z  

We may rewrite this in a form analogous to the original, 

-#'oZ'Xv = x2, + Xo , -  2Xl, (5.5) 

provided that we define 

z ' =  (Z/#o)[#l(2 -Z#o)  + 23 

#~=#o  (5.6) 

X n, ~ X 2 n  

Next, we need to consider how the other mass values should be renor-  
malized. Consider the mass mo =#k  for some k. The basic equation of 
motion reads - # k Z X o = X  ~ + x l - 2 X o ,  which when rearranged can be 
written 

( 4 ) 
2 2_z/~o #k ( 2 - z # o )  x o = x 2 + x - 2 - 2 x o  (5.7) 

We may thus write this equation in the form 

--#~k_IZ'Xo,=Xl,"~-X y--2X o, 

provided that Eq. (5.6) holds and that 

2#0 + #k(2 - Z#o) 
' k~> 1 (5.8) 

#k-- 1 ~ -  #0 2# 0 + #1(2 -- Z#0)' 

[The condition at k = 1 agrees with Eq. (5.6).] 
We now generalize our original definition of the masses, Eq. (2.3), so 

as to obtain a closed renormalization scheme. Define 

1, k = 0  (5.9) 
#k=  M1R k - l + M 2 ,  k>~l 

If M~ = R and M2 = 0, we recover our original definition. The renormalized 
masses given by Eq. (5.8) will have the form of Eq. (5.9) provided we define 
renormalized values M'I and M~ such that 
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Mi 

M ; -  

R M I ( 2 -  z) 

2 + (M~ + M2)(2 - z) 

2 + M2(2 - z) 

2 + ( m  1 + M2)(2 - z) 

(5.1o) 

In terms of M~ and M2, we may write the renormalization equation 
for z as 

z '= [2 + ( M t  + M 2 ) ( 2 - z ) ]  (5.11) 

Equations (5.10) and (5.11) form the basis for the renormalization 
group treatment. Let us consider the fixed points of these equations. We 
find that there are four fixed points, namely 

2 - R  - 1  
z (1)* =0,  M]I)*=R 1 - - - - ~  ' M(21)* = 1 - R  

z(2) , 2 R -  1 M] 2)* = R 1 + R M(221. - 2R 
R ' 1 R '  1 - R  (5.12) 

Z 13)* = 0, M~ 3)* = 0, M(2 3)* = 1 

z (41. = 3, M~ 4)* = 0, M~ 4)* = 1 

To interpret the relevance of each fixed point, we again consider the infinite 
system as a periodic one for some large period Pn. After renormalizing n 
times, we map the original system into the example we considered in Sec- 
tion 2. There we found that a frequency is in the spectrum provided that 
z ~ [0, 4]. Thus, in this problem, a frequency z is in the infinite system if 
and only if its n-times renormalized value z(n) e 1-0, 4]. For  the fixed points, 
this imlies that points which iterate to them are in the spectrum if and only 
if the corresponding z* < 1. From Eq. (5.12), for R > 1, we see that all four 
fixed points are relevant in this sense. 

Let us next consider the stability and scaling properties of the fixed 
points. Diagonalizing the matrix [c~(z', M'I, M;)/t3(z, MI,  M2)], we find 
that the maximum eigenvalues (for R > 1 ) are 

~(~) = 2 R  ~max  

)(2) 1 .m.x = 2--- ~ {(1 + 2R + 2 R 2 ) +  [(1 + 2 R + 2 R 2 ) 2 - 8 R ]  ~/2 } 

- (3) = [4 ,  R < 8 (5.13) 
Zm~" ) R/2, R > 8 

~4~ {2 ,  R < 2  
2m~x= --R, R > 2  
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Note that once again all the fixed points are repulsive, as required by the 
zero measure of the spectrum. From close scrutiny of the numerical results, 
it is apparent that for R e  [-1, 2], points near the bottom of any band 
iterate toward the third fixed point before deviating, while those near the 
tops of bands iterate toward the second fixed point. For  R > 2, we find that 
points near the bottom iterate toward the first fixed point, while those near 
the top still iterate toward the second. For  no value of R does the fourth 
fixed point appear to play a role. The reason for this is not clear; since 
z (4)* E [0, 4], we might expect it to be relevant. 

The scaling properties observed in Section 5.1 are now easy to see. The 
scaling near the bottom of the bands is determined by fixed points one and 
three; that near the top is determined by fixed point two. For  R = 1.5, we 
have 2 (3) = 4 and : ~2) = 6.3423...; for R = 4, we have ~(1) = 8 and •(2) = max  r~max max  m a x  

10.200...; for R = 8 ,  we get 2~a)x = 16 and "~max~r =18.111... . The numerical 
results in Section 5.1 agree well with these exact values. 

6. T H E R M O D Y N A M I C  P R O P E R T I E S  

We consider now applications of the above formalism to the 
calculation of the low-frequency integrated density of states and the low- 
temperature heat capacity. Define H(z)  to be the fraction of vibrational 
states with squared frequency less than 2.. For  either case I or II, we let x n 
be the z value of the top edge of the bottom band in the period Pn = 2n 
system. From Sections 3 and 5, we know that ' x ~ 2  -n, where 2 is the 
appropriate scaling value for the lowest band. But we also know that 
H(x~) = 2-n, since each band has the same number of states and there are 
2 ~ total bands in the period-p, system. Hence, in the limit z-+ 0, we have 

O ( z )  ~ z l ~  2 / log  .;, ~ 2./3 (6.1) 

where for case I, /? is given by 

~log 2/log(2R), 

/~= t l / 2  ' 

0 < R <  1/2 
(case I) (6.2) 

1/2 < R < 1 

and for case II 

~1/2, l < R < 2  
fl = Oog 2/log(2R), R > 1/2 (case II) (6.3) 

We may use this information about the integrated density of states to 
calculate the low-temperature specific heat. As a function of the frequency 
09, H(~o)~ ~02/3, implying that the density of states N(~o)= dH/&n ,,~ co 2/3-1. 
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For the harmonic chain the energy e oc o9, and hence N(e) ~ ~2~- ~. The heat 
capacity is then 

C ~ de N(e) e,/~Br - 1 "~ T2~ (6.4) 

Note that as R ~ 1, in either case I or II, we recover the normal one- 
dimensional result C ~  T. For  other values of R, however, we obtain an 
anomalous exponent dependent on the parameter R describing the 
hierarchy. In particular, for an appropriate value of R, we may obtain an 
exponent on the heat capacity anywhere in the interval [0, 1 ]. 

Furthermore, from the form of the exponent/3 given in Eqs. (6.2) and 
(6.3), we see that there is a singularity in the specific heat as a function of 
R. The presence of this singularity is reminiscent of another such one found 
in studying diffusion in a system with a hierarchical array of transition 
rates-- the ultradiffusion problem. (2~5~ In fact, there is a close analogy 
between the diffusive system and the vibrational one studied here, for 
case I. Alexander and Orbach (~8~ have shown that 

ds = 2dy/dw (6.5) 

where ds = 2/~ is the spectral dimension, d s is the fractal dimension of the 
underlying lattice, and dw is the random walk dimension for the diffusion 
problem defined by ( r 2 ( t ) ) ~  t 2/dw. In our case, we have d i =  1. From the 
study of ultradiffusion, we knowq that 2/dw = 2 log 2/log(2R), 0 < R < 1/2, 
and 2/dw= 1 for 1/2 < R < 1. Hence, the expression for /3 predicted by 
Eq. (6.5) agrees exactly with that derived in Eq. (6.2). The underlying 
dynamical properties of the diffusion and vibrational problems are thus 
completely related by Eq. (6.5). 

We may also relate our hierarchical problem to that of vibrations in a 
random system. To be explicit, consider case I, and let p(k) be the density 
of spring constant values. Since a fraction 2 n+l of the springs have value 
k ,  = R", we see that p(k) ,,~ k-~,  where ~ = log( 2R )/log( R ). If we now con- 
sider a random system with the same density of spring constants, we find ~12~ 
that the expressins for the low-frequency density of states and low-tem- 
perature specific heat are precisely the same as found above. Furthermore, 
we know that the random vibrational problem is related to the random 
diffusion problem, again through Eq. (6.5). Therefore, there is a close 
relationship among all four problems, which we have depicted in Fig. 6. 

We may exploit the relationship of hierarchical vibrations to ultra- 
diffusion by anticipating the results of the vibrational problem in higher 
dimensions. (s) If we consider a cubically arranged array of springs in 
masses in d dimensions, we will still have a fractal dimension d s = 1 (our set 
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Hie ra r ch i a l  Vibra t ions  

2dr 
d s - 

dw 

p ( k )  ~ k -c~ 

O/= In (2R)/In R 
k = Spr ing  Cons tan t  

�9 Random Vibra t ions  

2df 
d s - 

dw 

p((,0) ~ O.) -c~ 
Hie ra rch ia l  Diffusion ~ �9 Random Diffusion 

C~ = In (2R)/ in  R 
CO = t r ans i t ion  rate  

Fig. 6. A schematic representation of the relationship among the four p rob lems- -  

hierarchical diffusion and vibration, and random diffusion and v ibra t ion~discussed  in 

Section 6. 

is simply a union of line segments of dimension one). The random walk 
dimension 2/dw, however, increases by a factor of d. Hence, from Eq. (6.5), 
we anticipate that the spectral dimension in d dimensions is d} d) = d . d }  II. 
This gives a value for the exponent fl(d) in case I of 

~'d log 2/log(2R), 
fl(d) = dfl = I.d/2, 

0 < R <  1/2 
(6.6) 

1 / 2 < R <  1 

Because/~(J) can assume any value in [0, d/2] for an appropriate R value, 
this might lead to an ambiguity in the physical origin of the power law 
behavior in the specific heat at low temperatures. For example, in three 
dimensions, the electronic specific heat is linear in T at low temperatures. If 
one observed such a linear behavior in a hierarchical system where 
fl(3)(R) = 1/2, it would be unclear if the effect were due to the electronic or 
the vibrational properties. 

7. S U M M A R Y  

In this paper we have considered the vibrational properties of one- 
dimensional hierarchical systems. We have discovered that the allowed 
frequency spectrum forms a zero-measure Cantor set and that the 
corresponding eigenvectors are either extended or self-similar and critical. 
We have employed renormalization group analyses to calculate the scaling 
properties of the spectra and have verified the results through extensive 
numerical study. From knowledge of the scaling properties of the spectrum 
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near zero frequency, we were able to calculate the low-frequency behavior 
of the density of states and the low-temperature behavior of the specific 
heat. In the latter, we found a singularity in the exponent as a function of 
R. In addition, we have exhibited a close relationship between these 
systems and the hierrchical diffusion problem, as stated in Eq. (6.5), and 
with the random diffusion and vibration problems. For random systems, 
we find that results are identical to the hierarchical ones provided that we 
take the density of spring constants (or masses) equal to that of the 
hierarchical system. 
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